skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dutra, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we report an implementation of the quantum trajectory‐guided adaptive Gaussian (QTAG) method in a modular open‐source Libra package for quantum dynamics calculations. The QTAG method is based on a representation of wavefunctions in terms of a quantum trajectory‐guided adaptable Gaussians basis and is generalized for time‐propagation on multiple coupled surfaces to be applicable to model nonadiabatic dynamics. The potential matrix elements are evaluated within either the local harmonic or bra‐ket‐average (linear) approximations to the potential energy surfaces, the latter being a more practical option. Performance of the QTAG method is demonstrated and discussed for the Holstein and Tully models, which are the standard benchmarks for method development in the area of nonadiabatic dynamics. 
    more » « less
  2. null (Ed.)